Order of operations

The order of operations is a very simple, but a very important rule. So important, in fact, that you will have to obide by it in every math problem you encounter – ever! It concernes the order in which these operations need to be performed. The order of operations lists mathematical operations in order in which they should be performed in a mathematical expression, from highest to lowest priority. Here is that list:

order of operations

The first letters of these operations (P-E-M-A) are often used as a mnemonic device to help you remember the order in which they should be performed. As you can see, operations inside parentheses have the highest priority, then exponents, then multiplication and, with the lowest priority, addition. To explain how this translates to problem solving, we will use this example:

(8 – 10)2 – (-9) * (-3)

This is a fairly complex example, but it contains all the elements needed to properly explain the order of operations . The first step we have to do is to get rid of the parentheses where it is possible. That can be done by solving the expressions inside the parentheses.

(-2)2 – (-9) * (-3)

Notice that we left -9 and -3 inside their parentheses. That is because there are no operations to perform there and we will get rid of them a bit later. We will leave them be to avoid clutter. Now we need to perform the exponentation, as it is second on the list of priorities. Since (-2)2 equals 4, we get:

4 – (-9) * (-3)

The next operation on the order of operations is multiplication, so let us do it. The result of multiplying (-9) and (-3) is 27, so we are left with:

4 – 27

The only operation left to perform now is subtraction, which has the lowest priority. The end result is:

-23

It is important to adhere to this order as it affects the end result. If we performed the operations in a different order, we could have gotten the wrong result.

If you wish to practice the order of operations, you can use the free worksheets below.

Order of operations exams for teachers

Exam Name File Size Downloads Upload date
Non positive numeric expression
Order of operations – non positive integers 725.4 kB 5331 September 3, 2019
Order of operations – non positive decimals 602.6 kB 2061 September 3, 2019
Order of operations – non positive fractions 901.4 kB 2056 September 3, 2019
Order of operations – non positive mixed numbers 933.8 kB 1814 September 3, 2019
Order of operations – non positive improper fractions 857.5 kB 1674 September 3, 2019
Positive numeric expression
Order of operations – positive integers 662.2 kB 5680 September 3, 2019
Order of operations – positive decimal 732.4 kB 2005 September 3, 2019
Order of operations – positive fractions 848.8 kB 2809 September 3, 2019
Order of operations – positive mixed numbers 878.5 kB 2052 September 3, 2019
Order of operations – positive improper fractions 794.9 kB 1634 September 3, 2019
Non positive algebraic expression
Order of operations – non positive integers 897.4 kB 2557 September 3, 2019
Order of operations – non positive decimals 897.4 kB 1517 September 3, 2019
Order of operations – non positive fractions 1.2 MB 1387 September 3, 2019
Order of operations – non positive mixed numbers 1 MB 1488 September 3, 2019
Order of operations – non positive improper fractions 1020.2 kB 1364 September 3, 2019
Positive algebraic expression
Order of operations – positive integers 865.7 kB 3124 September 3, 2019
Order of operations – positive decimals 982.5 kB 1570 September 3, 2019
Order of operations – positive fractions 1.2 MB 1775 September 3, 2019
Order of operations – mixed fractions 1 MB 1705 September 3, 2019
Order of operations – improper fractions 981.2 kB 1576 September 3, 2019

Order of operations worksheets for students

Worksheet Name File Size Downloads Upload date
Order of operations – Positive numeric expressions 781.9 kB 5319 September 3, 2019
Order of operations – Non positive numeric expressions 843.8 kB 3193 September 3, 2019
Order of operations – Positive algebraic expressions 924.8 kB 2867 September 3, 2019
Order of operations – Non positive algebraic expressions 1.4 MB 2532 September 3, 2019