Polynomial

There are several conditions that need to be met in order to determine whether a mathematical expression is a polynomial. First, polynomials consist of constants and variables. These constants and variables make separable parts of a polynomial called terms and polynomials are made up of a finite number of these terms. The terms are separated by the symbols of mathematical operations (+,-,*), which brings us to the second condition.

The only mathematical operations which can be used in polynomials are addition, subtraction and multiplication. Division, in which the variable is a part of the denominator, does not produce a polynomial. If the denominator is a constant, a polynomial can be produced.

The third condition and the defining characteristic of polynomials are powers (or exponents). We covered exponents in the article called Squares and square roots, so if you are not sure what they are, feel free to refresh your memory. Each term in a polynomial has to have its non-negative integer exponent. That means that the value of the exponent for each term can be any integer between (and including) zero and any other finite value.

Terms and polynomials have their degrees or orders. The order of a term is determined by the sum of the exponents in that term. The order of a polynomial is the largest one among the orders of the terms that make the polynomial. That means that, for example, polynomials of the fourth order would look somewhat like this:

a*x4 + b*x3 + c*x2 + d*x + e

Or, if they have two variables, like this:

A*x2*y2 + b*x*y + c

We can name polynomials according to their degrees (or orders).

Degree

Name

0

constant

1

linear

2

quadratic

3

cubic

4

quartic (biquadratic)

5

quintic

6

sextic (hexic)

7

septic (heptic)

8

octic

9

nonic

10

decic

100

hectic

 

These are the degrees which have special names. For others you can always use the standard nomenclature – eleventh degree, 57th order and such.

Another important thing to know is that polynomials can have any number of terms as long as the number of terms is finite, no matter what their order is. Depending on that number, we name them:

Number of non-zero terms

Name

0

zero polynomial

1

monomial

2

binomial

3

trinomial

 

All other polynomials are simply called – polynomials.

What is interesting about the zero polynomial is that its order is intentionally left explicitly undefined or is defined to be negative, usually with the values of -1 or negative infinity. Also, it is the only one with an infinite number of roots.

Polynomials have several basic properties, a few of which we are going to mention here. The first one is that the sum of polynomials is always a polynomial (levitra online). Also the product of polynomials is itself a polynomial. The same thing goes for the composition of two polynomials.

Simplifying a polynomial

Solving polynomials of the third order or greater requires some advanced mathematical knowledge and we will show you how to do it when the time comes. But for now we will stick to the simplification of polynomials.

There are a few things you should have in mind when simplifying polynomials. The most important thing to remember is that addition and subtraction can be performed only with terms that have the same variables and of the same order! That is a general rule in mathematics, but it is particularly observable in this case. Also, all rules about the order of operations apply.

If after all this polynomials remind you of equations – you are right. In fact, polynomials perform as any other equations and you can treat them as such. But the reason we are mentioning them separately from equations is that they are the gateway to more complex mathematics and it is of vital importance that you understand them and know how to deal with them properly.

If you wish to practice what you learned and try to simplify a polynomial or two, please feel free to use the math worksheets below.

Polynomial exams for teachers

Exam Name File Size Downloads Upload date
Single variable – Integers
Integer polynomials with a single variable – very easy 0 B 2778 January 1, 1970
Integer polynomials with a single variable – easy 0 B 1476 January 1, 1970
Integer polynomials with a single variable – medium 0 B 1963 January 1, 1970
Integer polynomials with a single variable – hard 0 B 1719 January 1, 1970
Integer polynomials with a single variable – very hard 0 B 1622 January 1, 1970
Single variable – Decimals
Decimal polynomials with a single variable – very easy 0 B 1056 January 1, 1970
Decimal polynomials with a single variable – easy 0 B 948 January 1, 1970
Decimal polynomials with a single variable – medium 0 B 940 January 1, 1970
Decimal polynomials with a single variable – hard 0 B 841 January 1, 1970
Decimal polynomials with a single variable – very hard 0 B 893 January 1, 1970
Single variable – Fractions
Polynomial fractions with a single variable – very easy 0 B 1155 January 1, 1970
Polynomial fractions with a single variable – easy 0 B 1030 January 1, 1970
Polynomial fractions with a single variable – medium 0 B 1060 January 1, 1970
Polynomial fractions with a single variable – hard 0 B 1061 January 1, 1970
Polynomial fractions with a single variable – very hard 0 B 1110 January 1, 1970
Two variables – Integers
Integer polynomials with two variables – very easy 0 B 1352 January 1, 1970
Integer polynomials with two variables – easy 0 B 1154 January 1, 1970
Integer polynomials with two variables – medium 0 B 1324 January 1, 1970
Integer polynomials with two variables – hard 0 B 1297 January 1, 1970
Integer polynomials with two variables – very hard 0 B 1220 January 1, 1970
Two variables – Decimals
Decimal polynomials with two variables – very easy 0 B 911 January 1, 1970
Decimal polynomials with two variables – easy 0 B 866 January 1, 1970
Decimal polynomials with two variables – medium 0 B 871 January 1, 1970
Decimal polynomials with two variables – hard 0 B 858 January 1, 1970
Decimal polynomials with two variables – very hard 0 B 960 January 1, 1970
Two variables – Fractions
Polynomial fractions with two variables – very easy 0 B 933 January 1, 1970
Polynomial fractions with two variables – easy 0 B 831 January 1, 1970
Polynomial fractions with two variables – medium 0 B 863 January 1, 1970
Polynomial fractions with two variables – hard 0 B 835 January 1, 1970
Polynomial fractions with two variables – very hard 0 B 986 January 1, 1970


Polynomial worksheets for students

Worksheet Name File Size Downloads Upload date
Single variable – Integers
Simplify 4 integer polynomials with a single variable 0 B 2252 January 1, 1970
Simplify 5 integer polynomials with a single variable 0 B 1039 January 1, 1970
Simplify 6 integer polynomials with a single variable 0 B 1149 January 1, 1970
Simplify 7 integer polynomials with a single variable 0 B 1039 January 1, 1970
Simplify 8 integer polynomials with a single variable 0 B 979 January 1, 1970
Simplify 9 integer polynomials with a single variable 0 B 1764 January 1, 1970
Single variable – Decimals
Simplify 4 decimal polynomials with a single variable 0 B 1115 January 1, 1970
Simplify 5 decimal polynomials with a single variable 0 B 1204 January 1, 1970
Simplify 6 decimal polynomials with a single variable 0 B 870 January 1, 1970
Simplify 7 decimal polynomials with a single variable 0 B 1078 January 1, 1970
Simplify 8 decimal polynomials with a single variable 0 B 813 January 1, 1970
Simplify 9 decimal polynomials with a single variable 0 B 940 January 1, 1970
Single variable – Fractions
Simplify 4 polynomial fractions with a single variable 0 B 1086 January 1, 1970
Simplify 5 polynomial fractions with a single variable 0 B 912 January 1, 1970
Simplify 6 polynomial fractions with a single variable 0 B 973 January 1, 1970
Simplify 7 polynomial fractions with a single variable 0 B 844 January 1, 1970
Simplify 8 polynomial fractions with a single variable 0 B 1179 January 1, 1970
Simplify 8 polynomial fractions with a single variable 0 B 888 January 1, 1970
Two variables – Integers
Simplify 4 integer polynomials with two variables 0 B 2295 January 1, 1970
Simplify 5 integer polynomials with two variables 0 B 1340 January 1, 1970
Simplify 6 integer polynomials with two variables 0 B 1194 January 1, 1970
Simplify 7 integer polynomials with two variables 0 B 1074 January 1, 1970
Simplify 8 integer polynomials with two variables 0 B 1248 January 1, 1970
Simplify 9 integer polynomials with two variables 0 B 1278 January 1, 1970
Two variables – Decimals
Simplify 4 decimal polynomials with two variables 0 B 891 January 1, 1970
Simplify 5 decimal polynomials with two variables 0 B 964 January 1, 1970
Simplify 6 decimal polynomials with two variables 0 B 1022 January 1, 1970
Simplify 7 decimal polynomials with two variables 0 B 826 January 1, 1970
Simplify 8 decimal polynomials with two variables 0 B 832 January 1, 1970
Simplify 9 decimal polynomials with two variables 0 B 838 January 1, 1970
Two variables – Fractions
Simplify 4 polynomial fractions with two variables 0 B 1201 January 1, 1970
Simplify 5 polynomial fractions with two variables 0 B 1048 January 1, 1970
Simplify 6 polynomial fractions with two variables 0 B 819 January 1, 1970
Simplify 7 polynomial fractions with two variables 0 B 838 January 1, 1970
Simplify 8 polynomial fractions with two variables 0 B 1031 January 1, 1970
Simplify 9 polynomial fractions with two variables 0 B 1125 January 1, 1970